A Note on the Bivariate Lagrange Interpolation Polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivariate Lagrange Interpolation at the Chebyshev Nodes

We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...

متن کامل

A survey on bivariate Lagrange interpolation on Lissajous nodes

This article is a survey on recent research on bivariate polynomial interpolation on the node points of Lissajous curves. The resulting theory is a generalization of the generating curve approach developed for Lagrange interpolation on the Padua points. After classifying the different types of Lissajous curves, we give a short overview on interpolation and quadrature rules defined on the node p...

متن کامل

Stieltjes polynomials and Lagrange interpolation

Bounds are proved for the Stieltjes polynomial En+1, and lower bounds are proved for the distances of consecutive zeros of the Stieltjes polynomials and the Legendre polynomials Pn. This sharpens a known interlacing result of Szegö. As a byproduct, bounds are obtained for the Geronimus polynomials Gn. Applying these results, convergence theorems are proved for the Lagrange interpolation process...

متن کامل

On Improvement of Uniform Convergence of Lagrange Interpolation Polynomials

Due to the Lagrange interpolation polynomials do not converge uniformly to arbitrary continuous functions, in this paper, a new interpolation polynomial is constructed by using the weighted average method to the interpolated functions. It is proved that the interpolation polynomial not only converges uniformly to arbitrary continuous functions, but also has the best approximation order and the ...

متن کامل

Local Lagrange Interpolation by Bivariate C 1 Cubic Splines

Lagrange interpolation schemes are constructed based on C 1 cubic splines on certain triangulations obtained from checkerboard quad-rangulations. x1. Introduction Given a triangulation 4 of a simply connected polygonal domain , the space of C 1 cubic splines is deened by S 1 3 (4) := fs 2 C 1 (() : sj T 2 P 3 , all T 2 4g; where P 3 is the space of cubic bivariate polynomials. In this paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Applied Sciences

سال: 2008

ISSN: 1546-9239

DOI: 10.3844/ajassp.2008.1750.1753